CU Vision and Mission for Senior Design

Vision:

Integrity - understanding the big picture.

Mission:

Next step toward a professional career

• Pull together knowledge from various courses
• Learn new techniques
• Model a professional work environment
• Deal with ill-defined problems
Class Objectives

- Two-semester, 8-month long projects
- Integrate knowledge from previous courses
- Topics:
 1. Communications
 - Verbal, technical presentations
 - Writing documentation
 2. Business and legal aspects
 3. Systems engineering
 4. Ethics
 5. Design and development + project
 - Combine techniques and skills learned
 - Framework: approaching problems & solutions

ENGR 491-492
Projects - Selection

- Industry sponsored
 - 39 of 42 at CU, (5 projects sponsor out of 65 at KSU)
 - Example projects follow

- Selection
 1. Begin meeting sponsors preceding spring semester
 2. Discuss projects, explain expectations:
 - Must meet once a week – status and guidance
 - Must buy supplies and parts
 - (CU Still considering course fees)
 - First time sponsor
 - Small company vs. big
 3. Assign projects according to interest and engineering concentrations
1. Survey students
 - Concentrations (ME, EE, ChE)
 - Interests
 - Markets after graduation

2. Assign projects

3. Student-generated projects
 - Special case
 - Form company
 - Course fee, buy project supplies
 - Keep IP (CU still working this issue)
Business Aspects

- Professional (or essential) skills
 - Communications and technical presentations
 - Writing and documentation
 - Business etiquette

- Meetings, structure, conduct

- Negotiation

- Team psychology

- Technical legal issues – e.g., contracts, patents, copyrights, trade secrets
Systems Engineering in Senior Design
Systems Engineering Topics

- Problem Definition
- Organization
- Documentation
- Requirements and Standards
- Design techniques
- Analyses, synthesis, evaluation, decisions
- Review, QA
- Test and integration
Problem Definition

Sponsor
- Defines problem, supplies funding
- Statement of work (SOW)
- Meet and interview
- Tour facility (if possible)

Development
- Define stakeholders
- Brainstorm, evaluate, iterate
- Competitive analysis
 - Is someone else doing something similar?
 - Compare and contrast to other products
 - Decide
 - Innovate
 - Redesign the wheel in direct competition
 - Drop and move to another problem
- Organize team, tasking, scheduling
- Set vision, mission, goals

Team visits Fire Scout at Patuxent River Naval Air Station with sponsor
First Things First

- What is the need – the product?
- Who is going to use it?
- Why will people use it?
- Where will they use?
- When will they use it?
- And finally, how will they use it?
- Not just for marketing anymore!
Stakeholders defined

• Who will design the product?
• Who will manage the project?
• Who will benefit?
• Who are the customers?
• Who influences or regulates the use of the product?

Specify

➢ Primary
 ✓ Client or sponsor
 ✓ Design team and management (advisors)

➢ Secondary (may overlap with primary)
 ✓ Users
 ✓ Customers
 ✓ Regulators

➢ Tertiary
 ✓ People in proximity (townspeople near factory)
 ✓ Family of users

Stakeholders evaluate

• Status meetings and design reviews
• Prototype tests
• Field tests
• Compliance tests

Team field tests revised equipment carts with stakeholders – band members in actual performances
Project Organization

- Contract by each team to deliver, based on tasking/scheduling in PMP
- Planning – tasking, Gantt Chart
- Project management
- Documentation
- Weekly sponsor meetings
 - Purpose
 - Provide status
 - Receive guidance
 - Sponsor + advisor(s)
 - Team meetings
 - Minutes and action items
 - Design reviews

Team with Grifols sponsor and advisors
First semester
- Team contract
- PMP
- CONOPs
- Requirements (with standards)
- Report of Analyses
- Test Plan
- Global, Societal, Economic Impact Memo

Second semester (update & add)
- Test results
- Design Descriptions
- User Manual
- Action Item Memo
- Debrief or Production Handoff Memo
Requirements and Standards

- Use CONOPs (concept of operations) to develop requirements
- Interview and survey stakeholders
 - Sponsor
 - Potential customers
 - Potential users
- Analyses and synthesis
 - Brainstorm
 - Calculations and bench tests
- Living document – requirements can change
- Standards are researched, identified, and documented
Analyses, Synthesis, Evaluation

- Synthesis and tradeoffs
- Various models reviewed
 - V-model
 - Spiral model
- Evaluation
 - Calculations
 - Simulations
 - Bench tests
 - Field tests
Design and Decisions

- Rapid prototyping
- Iterative
- Decision
 - Decision matrices
 - Discussions with sponsors
 - Discussions with other stakeholders
Analyses is Iterative!

- PERRU model of iteration
 - Model used at all levels of abstraction
 - High-level – general project overview
 - Mid-level – particular module overview
 - Low-level – can be for particular tasks

- Record development effort

- Documents are living, revisable

© by Kim Fowler, 2015
Severity Matrix

<table>
<thead>
<tr>
<th>Consequence or Criticality</th>
<th>C</th>
<th>S</th>
<th>I</th>
<th>N2</th>
<th>N1</th>
<th>N0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Likelihood</td>
<td>r</td>
<td>lo</td>
<td>mod</td>
<td>hi</td>
<td>v</td>
<td></td>
</tr>
</tbody>
</table>

- **Red** shade: fix first, track in the management database
- **Yellow** shade: fix, track in the management database
- **White** shade: track in the management database at the discretion of the program manager
When to Analyze?

- Safety cases
- Basic calculations
- Behavioral simulation
- Monte Carlo simulations
- Analog simulation
- Fault trees
- Event tree analysis
- FTA
- ETA
- STPA
- FMECA
- Petri Net
- Barrier
- Bent pin
- Prototype tests
- Monte Carlo simulations
- Research Development
- Critical Design Phase
- Conceptual Design Phase
Types of Analyses

Various techniques
• System Theoretic Process Analysis (STPA)
• Event Tree Analysis (ETA)
• Fault Tree Analysis (FTA)
• Failure Modes Effects Criticality Ana. (FMECA)
• Safety Case

Proactive
• Inform design and development
• Addressing feasibility and failure:
 ➢ reliability,
 ➢ criticality,
 ➢ robustness, and
 ➢ safety

Reactive – Root Cause Analysis; helps find and fix problems after development begins
• Determine fault path and propagation
• Root Cause Analysis

© 2008 - 2013 by Kim Fowler, used with permission. All rights reserved.)
Hazard Analysis (HA)

Verify coverage of requirements within design and establish degree of confidence.

Risk Management

Risk and Hazard Analysis (RHA)

- STPA Document
- FMECA Document
- FTA Document
- ETA Document

- System-Theoretic Process Analysis (STPA)
- Failure Modes Effects and Criticality Analysis (FMECA)
- Fault Tree Analysis (FTA)
- Event Tree Analysis (ETA)

- Reliability calculations
- Electronic hardware
- Mechanical hardware and materials
- Software components and modules
- Software correctness processes
- Tools support and certifications

- More formal and analytical methods
- More heuristics

Currently this is almost a completely subjective assessment based on experience.

Project goal: make this a more formal derivation.

Requirements and Descriptions

© 2013 by Kim Fowler. Used with permission. All rights reserved.)
Review, QA

PMP defines
- QA
- Development model – V or spiral
- Phases – concept, preliminary, critical, fielding, production, etc.
- Review – types and timing

Review
- Sponsor reviews
- Group reviews of project
- Peer reviews – determine individual contributions
- Formal reviews
 - Sponsor meetings
 - 3 formal design reviews
PMP defines test and integration
Start early with bench tests in fall semester
Formal unit/module tests in January and February
Formal integration tests in March
Field tests in March/April
Design Reviews

- 3 over the year
 - Conceptual Design Review (CoDR) – early December
 - Preliminary Design Review (PDR) – early March
 - Critical Design Review (CDR) – late April

- Format
 - Expected time ≤ 12 min.
 - Q & A ~ 8 minutes
 - Short dry-run, week before
 - Formal business attire
Students procrastinate (surprised?)

- Staged delivery
 - Draft documents (see next slide)
 - Bench tests of modules, concepts, prototypes
 - Hard deadline for prototype (we are moving to early March)
 - Require field testing of prototype (with prototype want at least 5 weeks of solid testing)
 - Completed documents

Peer review to help determine individual contributions

- Contract in spring for teams to assign individual tasks – monitor for completion by assignee
- Grade on contract completion
- Perform peer review last week of classes (see slide following schedule)
A Bit about Campbell Engineering
Awards an Engineering Degree with a stated concentration
- EE
- Electro-Mechanical Systems
- ME
- ChE
 - (coming soon – Computer Engineering)

Project-based and teamwork collaboration curriculum
- Year 1
 - Intro. to Engineering
 - Engineering Design I – get several projects with hands-off guidance
 - Engineering Design II – learn the entire engineering cycle
- Years 2 & 3 – class labs in chosen concentration
- Year 4 – Senior Design for both semesters + class labs in chosen concentration

136 credit hours
- Most classes limited to 24 students or less
Learn hand and machine tools in first year
 • Very large fabrication area
 • Large tools
 ➢ 2 CNC machines
 ➢ Laser cutter
 ➢ 4 x 8 ShopBot
 ➢ 6 x 6 waterjet for up to 8” of steel plate
 ➢ Scanning electron microscope
 ➢ Industrial mill and lathe, 3 welders,
 • Encouraged to work on personal projects!
 • Trained for tool use with levels of proficient labeled on badges

3D Printers for use by all campus students
 • 5 High-quality + a recent donation of printer that handles many materials including carbon fiber
 • Carbon fiber printer

Class labs have top-quality equipment and tools
Additional Slides with Some Details
Schedule for Staged Deliveries

Fall semester

<table>
<thead>
<tr>
<th>Document or Demonstration or Presentation</th>
<th>Date due</th>
<th>Grade points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Draft contract</td>
<td>Sept. 14, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Project Management Plan (PMP)</td>
<td>Sept. 23, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Concept of Operations (CONOPs)</td>
<td>Oct. 12, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Requirements</td>
<td>Oct. 12, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Amended contract (bench tests specified)</td>
<td>Oct. 21, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Report of Analyses</td>
<td>Oct. 28, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Test Plan</td>
<td>Nov. 11, 2022</td>
<td>4</td>
</tr>
<tr>
<td>Bench tests of subsystems</td>
<td>Dec. 5, 2022</td>
<td>20</td>
</tr>
<tr>
<td>CoDR Presentation</td>
<td>Dec. 6, 2022</td>
<td>100</td>
</tr>
<tr>
<td>Deliver these documents + Global Impact memo</td>
<td>Dec. 9, 2022</td>
<td>130</td>
</tr>
</tbody>
</table>

Spring

<table>
<thead>
<tr>
<th>Document or Demonstration or Presentation</th>
<th>Date due</th>
<th>Grade points</th>
</tr>
</thead>
<tbody>
<tr>
<td>contract</td>
<td>Feb. 2, 2023</td>
<td>25</td>
</tr>
<tr>
<td>Demonstrate complete and functional prototype</td>
<td>Mar. 23, 2023</td>
<td>45</td>
</tr>
<tr>
<td>PDR Presentation</td>
<td>Mar. 2, 2023</td>
<td>100</td>
</tr>
<tr>
<td>Previous documents updated + draft Design Descriptions + draft User Manual</td>
<td>Mar. 2, 2023</td>
<td>175</td>
</tr>
<tr>
<td>deliver field test results</td>
<td>Apr. 20, 2023</td>
<td>60</td>
</tr>
<tr>
<td>CDR Presentation</td>
<td>Apr. 24, 2023</td>
<td>100</td>
</tr>
<tr>
<td>Deliver all documents + Debrief memo + electronic files + scrapbook</td>
<td>Apr. 28, 2023</td>
<td>195</td>
</tr>
</tbody>
</table>
Team Name or Sponsor: __________________________

Performance Reviews: Reviewer __________________________

Reviewed
team member: __________________________ Date: ____________

Reviewed
team member: __________________________ Date: ____________

Please rate the team member on the following concerns - fill in a circle per line

For questions 1, 2, 3, and 4, complete this sentence: “This team member was - ”

<table>
<thead>
<tr>
<th>Always</th>
<th>Usually</th>
<th>Sometimes</th>
<th>Seldom</th>
<th>Never</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. timeliness to meetings:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. timeliness in communications:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. timeliness in completing tasks:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. an initiate, left nothing out:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5. In a future technical business, I would want this team member with me on the same projects:

<table>
<thead>
<tr>
<th>Always</th>
<th>Usually</th>
<th>Sometimes</th>
<th>Seldom</th>
<th>Never</th>
</tr>
</thead>
</table>

Describe the title and responsibilities of this team member:

Describe in your own words how well this person performed:

Describe the title and responsibilities of this team member:

Describe in your own words how well this person performed:

Prototype Grading Rubrics

Fall grade rubric

Prototype Project Grades

<table>
<thead>
<tr>
<th>Individual grades</th>
<th>Team grades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>Per activity</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Points</td>
<td>7 Speech exercises</td>
</tr>
<tr>
<td>Per activity</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>70</td>
</tr>
<tr>
<td>grade</td>
<td>7%</td>
</tr>
</tbody>
</table>

Spring grade rubric

Prototype Project Grades

<table>
<thead>
<tr>
<th>Preliminary Design</th>
<th>Critical Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Points</td>
<td>Per activity</td>
</tr>
<tr>
<td>Points</td>
<td>Total</td>
</tr>
<tr>
<td>PMP & Contract update</td>
<td>Prototype built</td>
</tr>
<tr>
<td>Per activity</td>
<td>15</td>
</tr>
<tr>
<td>grade</td>
<td>1.5%</td>
</tr>
</tbody>
</table>
Books

Research
• Vibration profiles to improve placement
• Different recycled wastes as aggregate
• Automated placing of reinforcement

Prototype placement and compare compressive strength
Research

- Large steel culverts, partially submerged, corroding, collapsing
- Instrument and automate inspection to avoid visual inspection:
 - After draining ($25,000)
 - Or sending 2 divers (> $400/hr for 2 days)

Easily used by DOT personnel
ARL-Harnett Co. Illegal Dumping Monitor

- Alert to illegal dumping
- Test and re-develop AI-enabled camera system
 - Camera
 - Solar panel + battery
 - Cell-phone connection
 - All-weather operation
Prototype a tread-clamp for manufacturing skid-steers

Issues
- Cheap
- Easy and fast to use
- Manufacturing

People
- 4 ME
- Test and refine carts and electric tugs

- Issues
 - Ergonomics
 - Battery charging (Li-ion)
 - Cheap
 - Easy and fast to use
 - Manufacturing

- People
 - 3 ME
 - 1EE
Test and prototype a ToF camera
 • Custom & proprietary
 • Cheap
 • Does not need all capabilities

Tough problem
 • 2 ME
 • 2 EE
Test and prototype coatings to protect doors in salt environment

- Custom & proprietary
- Cheap

Estimated team

- 1 ME
- 2 ChE
Small facility (2 clean rooms + equipment) to deactivate potential viruses in plasma donations from COVID survivors. The plasma would then be used to treat COVID patients.

- whitepaper
- 3 ChEs
Canvas and survey CU students to find a need

Prototype a kiosk
- 2 EEs
- 2 Mes
- Business/Entrepreneur students
NAVAIR Tailboom Alignment

• Test helicopter boom shaft alignment
• Needs new instrumentation