

Campbell University: Senior Design and Systems Engineering

March 2, 2024

CU Vision and Mission for Senior Design

► Vision:

Integrity - understanding the big picture.

► Mission:

Next step toward a professional career

- Pull together knowledge from various courses
- Learn new techniques
- Model a professional work environment
- Deal with ill-defined problems

Class Objectives

- Two-semester, 8-month long projects
- Integrate knowledge from previous courses
- ► Topics:
 - 1. Communications
 - Verbal, technical presentations
 - Writing documentation
 - 2. Business and legal aspects
 - 3. Systems engineering
 - 4. Ethics
 - 5. Design and development + project
 - Combine techniques and skills learned
 - Framework: approaching problems & solutions

Projects - Selection

Industry sponsored

- 39 of 42 at CU, (5 projects sponsor out of 65 at KSU)
- Example projects follow
- ► Selection
 - 1. Begin meeting sponsors preceding spring semester
 - 2. Discuss projects, explain expectations:
 - Must meet once a week status and guidance
 - Must buy supplies and parts
 - (CU Still considering course fees)
 - ➢ First time sponsor
 - ➤Small company vs. big
 - 3. Assign projects according to interest and engineering concentrations

ENGR 491-492

Projects - Assignment

1. Survey students

- Concentrations (ME, EE, ChE)
- Interests
- markets after graduation
- 2. Assign projects
- 3. Student-generated projects
 - Special case
 - Form company
 - Course fee, buy project supplies
 - Keep IP (CU still working this issue)

Business Aspects

- Professional (or essential) skills
 - Communications and technical presentations
 - Writing and documentation
 - Business etiquette
- Meetings, structure, conduct
- ► Negotiation
- Team psychology
- Technical legal issues e.g., contracts, patents, copyrights, trade secrets

Systems Engineering in Senior Design

Systems Engineering Topics

- Problem Definition
- Organization
- Documentation
- Requirements and Standards
- Design techniques
- Analyses, synthesis, evaluation, decisions
- ► Review, QA
- Test and integration

ENGR 491-492

Problem Definition

► Sponsor

- Defines problem, supplies funding
- Statement of work (SOW)
- Meet and interview
- Tour facility (if possible)

► Development

- Define stakeholders
- ► Brainstorm, evaluate, iterate
- Competitive analysis
 - > Is someone else doing something similar?
 - > Compare and contrast to other products
 - ➢ Decide
 - Innovate
 - $\checkmark~$ Redesign the wheel in direct competition
 - \checkmark $\,$ Drop and move to another problem
- Organize team, tasking, scheduling
- ► Set vision, mission, goals

Team visits Fire Scout at Patuxent River Naval Air Station with sponsor

First Things First

- ► What is the need the product?
- ► Who is going to use it?
- ► Why will people use it?
- ► Where will they use?
- ► When will they use it?
- And finally, how will they use it?
- Not just for marketing anymore!

Stakeholders defined

- Who will design the product?
- Who will manage the project?
- Who will benefit?
- Who are the customers?
- Who influences or regulates the use of the product?
- Specify
 - > Primary
 - ✓ Client or sponsor
 - ✓ Design team and management (advisors)
 - Secondary (may overlap with primary)
 - ✓ Users
 - ✓ Customers
 - ✓ Regulators
 - ➤ Tertiary
 - ✓ People in proximity (townspeople near factory)
 - ✓ Family of users

Stakeholders evaluate

- Status meetings and design reviews
- Prototype tests
- Field tests
- Compliance tests

Stakeholders

Team field tests revised equipment carts with stakeholders – band members in actual performances

Project Organization

- Contract by each team to deliver, based on tasking/scheduling in PMP
- Planning tasking, Gantt Chart
- Project management
- Documentation
- Weekly sponsor meetings
 - Purpose
 - Provide status
 - ➢ Receive guidance
 - Sponsor + advisor(s)
 - Team meetings
 - Minutes and action items
 - Design reviews

Team with Grifols sponsor and advisors

Documentation

First semester

- Team contract
- PMP
- CONOPs
- Requirements (with standards)
- Report of Analyses
- Test Plan
- Global, Societal, Economic Impact Memo

Second semester (update & add)

- Test results
- Design Descriptions
- User Manual
- Action Item Memo
- Debrief or Production Handoff Memo

Sampling of 7 different team document binders

Requirements and Standards

- Use CONOPs (concept of operations) to develop requirements
- Interview and survey stakeholders
 - Sponsor
 - Potential customers
 - Potential users
- Analyses and synthesis
 - Brainstorm
 - Calculations and bench tests
- Living document requirements can change
- Standards are researched, identified, and documented

Analyses, Synthesis, Evaluation

Design and Decisions

- Rapid prototyping
- ► Iterative
- ► Decision
 - Decision matrices
 - Discussions with sponsors
 - Discussions with other stakeholders

Analyses is Iterative!

PERRU model of iteration

Model used at all levels of abstraction

High-level – general project overview
Mid-level – particular module overview
Low-level – can be for particular tasks

- Record development effort
- Documents are living, revisable

© by Kim Fowler, 2015

Severity Matrix

	С							
Consequence or Criticality	S							
	N2							
	N1							
	NO							
		r	lo	mod	hi	V		
	Likelihood							

fix first, track in the management database

fix, track in the management database

track in the management database at the

discretion of the program manager

Types of Analyses

- Various techniques
 - System Theoretic Process Analysis (STPA)
 - Event Tree Analysis (ETA)
 - Fault Tree Analysis (FTA)
 - Failure Modes Effects Criticality Ana. (FMECA)
 - Safety Case
- ► Proactive
 - Inform design and development
 - Addressing feasibility and failure:
 - reliability,
 - \succ criticality,
 - ➢ robustness, and
 - safety
- Reactive Root Cause Analysis; helps find and fix problems after development begins
 - Determine fault path and propagation
 - Root Cause Analysis

Hazard Analysis (HA)

(© 2013 by Kim Fowler. Used with permission. All rights reserved.)

ENGR 491-492

Review, QA

► PMP defines

- QA
- Development model V or spiral
- Phases concept, preliminary, critical, fielding, production, etc.
- Review types and timing

► Review

- Sponsor reviews
- Group reviews of project
- Peer reviews –determine individual contributions
- Formal reviews
 - > Sponsor meetings
 - ➤ 3 formal design reviews

ENGR 491-492

Test and Integration

- PMP defines test and integration
- Start early with bench tests in fall semester
- Formal unit/module tests in January and February
- Formal integration tests in March
- Field tests in March/April

Design Reviews

- ► 3 over the year
 - Conceptual Design Review (CoDR) early December
 - Preliminary Design Review (PDR) early March
 - Critical Design Review (CDR) late April
- ► Format
 - Expected time \leq 12 min.
 - Q & A ~ 8 minutes
 - Short dry-run, week before
 - Formal business attire

Some Issues

- Students procrastinate (surprised?)
 - Staged delivery
 - Draft documents (see next slide)
 - ➢ Bench tests of modules, concepts, prototypes
 - ≻Hard deadline for prototype (we are moving to early March)
 - >Require field testing of prototype (with prototype want at least 5 weeks of solid testing)
 - Completed documents
- Peer review to help determine individual contributions
 - Contract in spring for teams to assign individual tasks monitor for completion by assignee
 - Grade on contract completion
 - Perform peer review last week of classes (see slide following schedule)

A Bit about Campbell Engineering

Curriculum

- Awards an Engineering Degree with a stated concentration
 - EE
 - Electro-Mechanical Systems
 - ME
 - ChE
 - (coming soon Computer Engineering)
- Project-based and teamwork collaboration curriculum
 - Year 1
 - ≻Intro. to Engineering
 - > Engineering Design I get several projects with hands-off guidance
 - ≻ Engineering Design II learn the entire engineering cycle
 - Years 2 & 3 class labs in chosen concentration
 - Year 4 Senior Design for both semesters + class labs in chosen concentration
- ► 136 credit hours
- Most classes limited to 24 students or less

ENGR 491-492

Distinctives

- Learn hand and machine tools in first year
 - Very large fabrication area
 - Large tools
 - ➤ 2 CNC machines
 - ➤ Laser cutter
 - ➤ 4 x 8 ShopBot
 - ➢ 6 x 6 waterjet for up to 8" of steel plate
 - Scanning electron microscope
 - \succ Industrial mill and lathe, 3 welders,
 - Encouraged to work on personal projects!
 - Trained for tool use with levels of proficient labeled on badges
- ► 3D Printers for use by all campus students
 - 5 High-quality + a recent donation of printer that handles many materials including carbon fiber
 - Carbon fiber printer
- Class labs have top-quality equipment and tools

Additional Slides with Some Details

Schedule for Staged Deliveries

► Fall semester

			Grade
	Document or Demonstration or Presentation	Date due	points
	Draft contract	Sept. 14, 2022	4
	Project Management Plan (PMP)	Sept. 23, 2022	4
022	Concept of Operations (CONOPs)	Oct. 12, 2022	4
ir 2(Requirements	Oct. 12, 2022	4
este	Amended contract (bench tests specified)	Oct. 21, 2022	4
me	Report of Analyses	Oct. 28, 2022	4
l Se	Test Plan	Nov. 11, 2022	4
Fal	Bench tests of subsystems	Dec. 5, 2022	20
	CoDR Presentation	Dec. 6, 2022	100
	Deliver these documents + Global Impact memo	Dec. 9, 2022	130

			Grade
	Document or Demonstration or Presentation	Date due	points
	contract	Feb. 2, 2023	25
123	Demonstrate complete and functional prototype	Mar. 23, 2023	45
r 2(PDR Presentation	Mar. 2, 2023	100
ste	Previous documents updated + draft Design		
me	Descriptions + draft User Manual	Mar. 2, 2023	175
s Se	deliver field test results	Apr. 20, 2023	60
ring	CDR Presentation	Apr. 24, 2023	100
Sp	Deliver all documents + Debrief memo + electronic		
	files + scrapbook	Apr. 28, 2023	195

Peer Review form

Team Name or Sponsor: _____

Performance Reviews: Reviewer _

Reviewed team member:			Date:			te			
Please rate the team member on the	e following c	oncerns - fill in	a circle per line			Ple			
or questions 1, 2, 3, and 4, complete this sentence: "This team member was - "									
1. timely to meetings:	Always	Usually	Sometimes	Seldom	Never	1			
2. timely in communications:	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	2			
3. timely in completing tasks:	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	3			
4. an initiator, left nothing out:	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	4			
5. In a future technical business,	I would war	nt this team m	ember with me	on the same p	rojects:	5			
	Always	Usually	Sometimes	Seldom	Never				
Describe the title and responsibilitie	es of this tear	m member:				De			
Describe in your own words how we	ell this persor	n performed:				De			

Please rate the team member on the	e following c	oncerns - fill in	a circle per line		
For questions 1, 2, 3, and 4, complet	te this senten	ce: "This team	member was - "	C	
1. timely to meetings:					N
2. timely in communications:	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
3. timely in completing tasks:	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
4. an initiator, left nothing out:	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
5. In a future technical business,	I would war	nt this team m	ember with me	on the same pr	roject
	Always	Usually	Sometimes	Seldom	٦
Describe the title and responsibilitie	es of this tear	n member:			

Describe in your own words how well this person performed:

ENGR 491

Prototype Grading Rubrics

ENGR 491- 32

► Fall grade rubric

Prototype Project Grades

						Team grades									
	Individual grades Contract, draft do						draft docu	ments, and bench test demonstrations are all or none grades							
					Team	Draft	Amended		Require-	of	Test	Demo			
	7 Speech	Thank	10	Final	Peer	PMP &	PMP &	CONOPs	ments	Analyses	Plan	bench	CoDR	CoDR	
Points	exercises	you note	quizzes	Exam	Review	contract	contract	draft	draft	draft	draft	tests	pres.	doc.	Total
Per activity	10	30	10	100	250	25	25	25	25	25	25	70	100	130	
Total	70	30	100	100	250	25	25	25	25	25	25	70	100	130	1000
grade	7%	3%	10%	10%	25%	2.5%	2.5%	3%	2.5%	2.5%	2.5%	7%	10%	13%	100%

► Spring grade rubric

		Preli	iminary De	esign	Cr	itical Desi	gn			
	PMP &	Proto-						Photo		
	Contract	type	Present-		Test	Present-		Scrap-	Team	
Points	update	built	ation	Doc.	Demo	ation	Doc.	book	Review	Total
Per activity	15	35	100	175	60	100	195	20	300	1000
grade	1.5%	3.5%	10.0%	17.5%	6.0%	10.0%	19.5%	2.0%	30%	100%

Books

- ► "Giving Presentations," Harvard Business School Press, 2007.
- ► "Negotiating Outcomes," Harvard Business School Press, 2007.
- ► "Running Meetings," Harvard Business School Press, 2006.
- Integrity: The Courage to Meet the Demands of Reality," by Dr. Henry Cloud, Collins and imprint of HarperCollinsPublishers, 2006.
- "Developing and Managing Embedded Systems and Products," by Fowler and Silver, Elsevier, 2015.

3D Concrete Printing

► Research

- Vibration profiles to improve placement
- Different recycled wastes as aggregate
- Automated placing of reinforcement
- Prototype placement and compare compressive strength

Steel Culvert Inspection

► Research

- Large steel culverts, partially submerged, corroding, collapsing
- Instrument and automate inspection to avoid visual inspection:
 - ≻After draining (\$25,000)
 - ➢Or sending 2 divers (>\$400/hr for 2 days)
- Easily used by DOT personnel

ARL-Harnett Co. Illegal Dumping Monitor

- ► Alert to illegal dumping
- Test and re-develop Al-enabled camera system
 - Camera
 - Solar panel + battery
 - Cell-phone connection
 - All-weather operation

ENGR 491-492

Caterpillar: Tread Clamp

- Prototype a tread-clamp for manufacturing skid-steers
- ► Issues
 - Cheap
 - Easy and fast to use
 - Manufacturing
- ► People
 - 4 ME

ENGR 491-492

CU Bandwagon

Test and refine carts and electric tugs

► Issues

- Ergonomics
- Battery charging (Li-ion)
- Cheap
- Easy and fast to use
- Manufacturing

► People

- 3 ME
- 1EE

Boon Edam: Project Erebus

- Test and prototype a ToF camera
 - Custom & proprietary
 - Cheap
 - Does not need all capabilities
- ► Tough problem
 - 2 ME
 - 2 EE

BOON EDAM

Boon Edam: Corrosion Coating

- Test and prototype coatings to protect doors in salt environment
 - Custom & proprietary
 - Cheap
- Estimated team
 - 1 ME
 - 2 ChE

BOON EDAM

Grifols: Facility

- Small facility (2 clean rooms + equipment) to deactivate potential viruses in plasma donations from COVID survivors. The plasma would then be used to treat COVID patients.
 - whitepaper
 - 3 ChEs

Meridian: CU Kiosk Prototype

- Canvas and survey CU students to find a need
- Prototype a kiosk
 - 2 EEs
 - 2 Mes
 - Business/Entrepreneur students

NAVAIR Tailboom Alignment

- Test helicopter boom shaft alignment
- Needs new instrumentation

ENGR 491-