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From Alchemy to Chemistry
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Book on Alchemy (recipes) — 1600s

Islamic and European alchemists developed a
basic set of laboratory techniques, theories,
and terms, some of which are still in use today.
However, they did not understand the
underlying building blocks of matter, still relying
on the 4 elements of Greek philosophy.
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Periodic Table of Elements — 1800s

In 1817, German physicist Johann Wolfgang
Doébereiner began to formulate one of the
earliest attempts to classify the elements. In
1829, he found that he could form some of the
elements into groups of three, with the
members of each group having related
properties. It took 100+ years to fill the table

Alchemy — Chemistry — Chemical Engineering — 300+ Years
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Where are we on our Systems Eb&
Engineering (SE) journey?

 We are in a transition phase between practice (with plenty of
heuristics and data) and the beginnings of a deeper theory

* What are the laws that can accurately predict the behavior of
complex systems under a set of given assumptions ?

* Inorder for any “laws” to be accepted as true, there needs to
be a set of experiments and data to validate (or falsify) them

Systems Engineering in 2023 is where
Chemical Engineering was in 1823 !



Fundamental Laws in Science

* First Law of Thermodynamics
— Conservation of Energy AU =Q - W.
— Rudolf Clausius 1850 I I I

Change
& External System

Ininternal ,
stimulus observable

. . state response
* Second Law of Classical Mechanics l / l

— Conservation of Angular Momentum
; H=T-wx [lm]
— Leonhard Euler 1736 — = = ==

What is the conserved quantity in Systems Science
(and therefore Systems Engineering)?
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The Wright Flyer (1903)
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Structural

DSM of Wright Flyer
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Legend
Physical connection
Mass flow
Energy flow
Information flow

DSM 18x18

Connections
62 Physical

4 Mass Flow
11 Energy Flow
9 Info Flow
Total: 86

NZF = 86/1,224
= 7% density

<k>=~5

Design Structure Matrix (DSM) — captures structure of elements of form



Augustine’s 16t Law e |DSS
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Year of Entry into Service

Norm Augustine, Augustine’s Laws, 6™ Edition, AIAA Press, 1997.



Functional Requirements Explosion in Aviation

Producibility «e———
Affordability e——

Supportability
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R s

Design requirements growth for aerospace vehicles.
Image by MIT OpenCourseWare.
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F-35 JSF &. IDSS
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What is driving this escalation of cost? Ebbl IDSS

Contributors to Price Escalation from the F-15A (1975) to the F-22A (2005)

12
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Production rate and
learning

Customer-driven
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) Complexity
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X
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Annual escalation rate, %

Material

Source: DARPATTO (2008)
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Three Dimensions of Complexity
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IDSS

¢
The Structural Complexity Metric i&«

VN

Structural Complexity, (C = Cl + Cz'cs

Complexity due to system topology (a
scaling factor) typically> 1

Complexity due to components alone
(number and heterogeneity of components)

Complexity due to pair-wise
componentinteractions(number and
heterogeneity of interactions)

Sinha, Kaushik, and Olivier L. de Weck. "Empirical validation of structural
complexity metric and complexity management for engineering
systems." Systems Engineering 19, no. 3 (2016): 193-206. 14



Experiment: We slow down w/complexity E;&‘
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~1.5

Model functional form

- # Models: 12

Y = ax®

Model parameters {a, b}

# Subjects: 17

{14.68, 1.4775}

Coefficient of multiple determination (R?) 0.992
Mean magnitude of relative error (MMRE) 0.107
PRED (0.25) 0.9167

Significance test (parameters)

t,=28.2,t, = 30.67 (>t,= 2.131)

Significance of regression model (F test)

f=124>f;5,10=4.54

0 2 4 6 8 10 12 14 16 18

Structural Complexity

Structural Complexity, C = O(n**) — mild super-linearity

Average build time, t = O(C**) — strong super-linearity

15



Empirical Data: Complexity Increase of En ines»‘ b IDSS
P $-omplexity SINES N e

New
Complexity = 499 :
Complexity = 351 o
Complexity increase +42%
C C C C C/C
: i : o Cnew /Cold

Old | New | Old | New | Old | New | Old | New | Old | New
Most Likely | 161 [ 188 | 126 | 184 [ 151 [ 1.69 | 351 | 499 1 1 1.42
Mean 179 244 141 | 2404 | 151 | 1.69 392 650.3 | 1.12 | 1.30 1.65
Median 178 | 242 | 139 [ 2389 [ 151 | 1.69 | 388 [ 646.8 | 1.10 | 1.29 1.66
70 percentile | 181 | 2479 [ 145 | 246.2 | 1.51 | 1.69 | 399.6 | 663.94 | 1.14 | 1.33 1.66

Trend towards more distributed architecture with higher structural complexity and
significantly higher development cost”. Similar trend was observed in Printing Systems.
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Left: Diminishing returns of
normalized TSFC performance
for air-breathing aircraft engines
versus complexity, Bottom:
evolution from turbojet to
geared high BPR turbofans

Complexity — Performance trade-
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SYSTEMS ENGINEERING

~ Theoretical
Foundations

“TO” state:

“The systems engineering foundations have a stronger
scientific and mathematical grounding based on advanced
practices, heuristics, systems observable phenomena, and
formal ontologies. The foundations are shared across
application domains, and provide additional rationale for
selecting and adapting practices to maximize value for the
particular application.”

https://violin-strawberry-9kms.squarespace.com/theoretical-foundations 18
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Complexity and Value Maximization iu IDSS

Complexity budget C* is the level of complexity that maximizes system Value !
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KISS heuristic !




Example: Complexity Target to optimize Value
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The First Law of Systems Science and SE:
Conservation of Complexity

* First Law of Thermodynamics:
— Conservation of Energy

AU =Q - W.

— The change in internal energy AU is equal to the heat Q
added to the system minus the work W done by the system.

* The First Law of Systems Science and Engineering:
— Conservation of Complexity AC = uAP — eAE

— The change in complexity AC of the system is equal to a
proportional change in expected performance AP minus the
change in effort AE expended by the enterprise

ct-m _ (1+kC™)?
H= 2PmaxknCn"=1(1-kCc™)

E = —

2am 21
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Validation of the 1%t Law: Successful vs Failed Systems 5 IDSS

*  CoBRA (Aerospace Corp., 2008) — Complexity Index based on analysis of historical data.

*  Projects that were highly complex but tried to cut development cost had high failure rates

System Cost as Function of Com plexity y = 11.523e 5705
R =0.8832
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Key Messages i&i *

Complexity C of artificial (and natural?) systems has been increasing

This is driven by customers, competition, and regulation = functional
performance P = structural complexity C = organizational effort E

A rigorous measure of complexity is based on graph energy of DSM
— C=C1+C2*C3;
— C3: Graph Energy is a measure of topological complexity

— Explicit complexity-based budgeting with clear targets is needed in SE

First Law of Systems Science and Engineering (according to de Weck-Sinha):
— Conservation of Complexity

— Given a set of functional requirements P, establish minimum needed structural
complexity C, and calculate organizational effort E (NRE) to satisfy the first law

Violating the first law can lead to project or system failure !

23



INCOSE IW 2023
Future of Systems Engineering (FuSE)

Foundations Stream
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